Costruito a Trieste un ponte di carbonio fra tessuti nervosi


La ricerca, coordinata dalla Scuola Internazionale Superiore di Studi Avanzati (SISSA) di Trieste con la collaborazione dell’Università di Roma Tor Vergata e dell’Università di Trieste, ha inoltre verificato la biocompatibilità del materiale in vivo dimostrando che il suo impianto nel tessuto nervoso di roditori non provoca la formazione di cicatrici evidenti o l’emergere di una risposta immunitaria marcata. Lo studio pubblicato su Science Advances (una “costola” della prestigiosa rivista Science) dimostra che questo materiale è molto promettente nelle applicazioni biomediche e potrebbe essere valutato il suo utilizzo negli impianti nervosi permanenti.
“Al microscopio ha l’aspetto di un groviglio di tubi. Pensate che inizialmente era stato studiato, dal gruppo di Maurizio De Crescenzi all’Università di Roma Tor Vergata, per ripulire il mare dagli idrocarburi sversati”», spiega Laura Ballerini, professoressa della SISSA e coordinatrice dello studio appena pubblicato. È stata l’intuizione di Maurizio Prato, spiega ancora Ballerini, a spingerli a indagare la possibilità di utilizzare questo materiale nei tessuti nervosi. L’idea di sviluppare degli ibridi tra neuroni e nano-materiali nasce da un progetto di lunga data e dalla collaborazione tra i gruppi di Prato (Università di Trieste) e Ballerini alla SISSA.
Nella ricerca attuale Ballerini e il suo team, come prima cosa, hanno indagato la reazione del materiale con i tessuti nervosi in vitro. “Abbiamo usato due fettine di midollo spinale in coltura, separate da 300 micron di distanza”, spiega Sadaf Usmani, studentessa di PhD della SISSA e prima autrice della ricerca. “In queste condizioni, senza nulla che si frapponga fra i due campioni oltre alla soluzione di coltura, si osserva una crescita di fibre nervose che si estendono in linea retta in ogni direzione, non necessariamente verso l’altro tessuto. Se nello spazio fra i due inseriamo un pezzetto di questa spugna al carbonio invece vediamo una fittissima crescita di fibre nervose che vanno a riempire il supporto e si incontrano e intrecciano con quelle dell’altro campione”.
Non basta però che ci sia un incontro fisico fra le fibre, puntualizza Denis Scaini, ricercatore dell’Università di Trieste, e fra gli autori della ricerca: “Bisogna dimostrare che esiste anche una connessione funzionale fra le due popolazioni di neuroni”. In questa parte del lavoro è stato fondamentale l’apporto di Davide Zoccolan, professore della SISSA, e del suo gruppo. «Con tecniche di analisi del segnale da loro già sviluppate siamo riusciti a dimostrare due cose: che l’attività nervosa spontanea nei due campioni connessi era realmente correlata (mentre non lo era quando la spugna era assente), e che applicando un segnale elettrico a uno dei due campioni, solo quando erano presenti i nanotubi il segnale veniva registrato anche nell’altro campione”.
“In conclusione – commenta Ballerini – gli ottimi risultati a livello strutturale e funzionale in vitro e le evidenti prove di biocompatibilità in vivo ci spingono a continuare su questa linea di ricerca. Questi materiali potrebbero essere molto utili per esempio per rivestire gli elettrodi che si usano nel trattamento di disordini motori, come tremore essenziale o Parkinson, perché ben accettati dai tessuti – gli impianti di oggi mostrano infatti un decadimento nella loro efficacia nel tempo per via della cicatrice che si forma. Speriamo inoltre di stimolare altri gruppi di ricerca, con competenze multidisciplinari, ad ampliare questo tipo di studi”.


Leggi anche

Fin dalla sua fondazione, Impact Acoustic ha perseguito un chiaro obiettivo: sviluppare e produrre soluzioni acustiche di alta qualità che soddisfino i più elevati standard di sostenibilità. Utilizza materiali come il PET e la cellulosa riciclati e, fin dal principio, ha completamente digitalizzato l’intero processo produttivo: all’interno del processo produttivo di Impact Acoustic, Zünd e le sue macchine da taglio automatiche digitali sono state tra i principali investimenti. E l’azienda non se ne è pentita neanche per un istante….

Leggi tutto…

Hitachi High-Tech Analytical Science Corporation, società controllata da Hitachi High-Tech Corporation e specializzata nella produzione di strumenti di analisi e misura, ha lanciato NEXTA DMA200, un nuovo analizzatore termico, con una maggiore resistenza ed efficienza, che verrà utilizzato per lo sviluppo di materiali compositi avanzati e il controllo della qualità del prodotto….

Leggi tutto…

Andy Sutton, ingegnere di produzione specialista nello sviluppo di materiali compositi all’avanguardia, ha lanciato Access Composites, una nuova realtà formativa che ha l’obiettivo di colmare una grave lacuna nel supporto accessibile e nella pianificazione aziendale, insegnando a tutte le organizzazioni, di tutte le dimensioni, come lavorare con i compositi in maniera efficiente …

Leggi tutto…

Gli adesivi acrilici strutturali ARALDITE® 2080 e ARALDITE® 2081 di Huntsman, sono stati sviluppati per garantire un’elevata resistenza e una minore infiammabilità rispetto ai prodotti tradizionali a base metil-metacrilato. Per la maggior parte delle applicazioni, richiedono una preparazione minima della superficie e assicurano buone prestazioni di adesione su diversi substrati (plastica, compositi e metallo) insieme ad una rapida polimerizzazione a temperatura ambiente….

Leggi tutto…

Il peso dei satelliti spaziali può rendere costoso il raggiungimento dell’orbita terrestre bassa (LEO). Se ne sono rese conto le aziende australiane che hanno dovuto fare i conti con i fornitori di lancio che fatturano i carichi utili al chilogrammo. È emersa quindi la necessità di utilizzare strutture più leggere, ma al tempo stesso robuste, per resistere in ambienti spaziali con temperature estreme….

Leggi tutto…