Creato un materiale senza attrito


Scientists at the US Department of Energy’s Argonne National Laboratory have found a way to use diamonds and graphene to create a new material combination that demonstrates so-called superlubricity.

Led by nanoscientist Ani Sumant of Argonne’s Center for Nanoscale Materials (CNM) and Argonne Distinguished Fellow Ali Erdemir of Argonne’s Energy Systems Division, the Argonne team combined diamond nanoparticles, small patches of graphene, and a diamond-like carbon material to create superlubricity, a highly-desirable property in which friction drops to near zero.

According to Erdemir, as the graphene patches and diamond particles rub up against a large diamond-like carbon surface, the graphene rolls itself around the diamond particle, creating something that looks like a ball bearing on the nanoscopic level.

The interaction between the graphene and the diamond-like carbon is essential for creating the ‘superlubricity’ effect,” he said in a statement. “The two materials depend on each other.”

By creating the graphene-encapsulated diamond ball bearings, or scrolls, the team found a way to translate the nanoscale superlubricity into a macroscale phenomenon. Because the scrolls change their orientation during the sliding process, enough diamond particles and graphene patches prevent the two surfaces from becoming locked in state. The team used large-scale atomistic computations on the Mira supercomputer at the Argonne Leadership Computing Facility to prove that the effect could be seen not merely at the nanoscale but also at the macroscale.

A scroll can be manipulated and rotated much more easily than a simple sheet of graphene or graphite,” Berman said.

The team found, however, that superlubricity wasn’t maintained in a humid environment. Because this behaviour was counterintuitive, the team again turned to atomistic calculations. “We observed that the scroll formation was inhibited in the presence of a water layer, therefore causing higher friction,” said Subramanian Sankaranarayanan, a computational nanoscientist at Argonne and co-author of a paper describing the work in Science Express.

While the field of tribology has long been concerned with ways to reduce friction – and therefore the energy demands of different mechanical systems – superlubricity has proved elusive.

Everyone would dream of being able to achieve superlubricity in a wide range of mechanical systems, but it’s a very difficult goal to achieve,” said Sanket Deshmukh, another CNM postdoctoral researcher on the study.

The knowledge gained from this study will be crucial in finding ways to reduce friction in everything from engines or turbines to computer hard disks and microelectromechanical systems,” said Sumant.


Photo 1’s caption: nanoscientist Ani Sumant of Argonne’s Center for Nanoscale Materials

 


Leggi anche

Gli adesivi acrilici strutturali ARALDITE® 2080 e ARALDITE® 2081 di Huntsman, sono stati sviluppati per garantire un’elevata resistenza e una minore infiammabilità rispetto ai prodotti tradizionali a base metil-metacrilato. Per la maggior parte delle applicazioni, richiedono una preparazione minima della superficie e assicurano buone prestazioni di adesione su diversi substrati (plastica, compositi e metallo) insieme ad una rapida polimerizzazione a temperatura ambiente….

Leggi tutto…

Il peso dei satelliti spaziali può rendere costoso il raggiungimento dell’orbita terrestre bassa (LEO). Se ne sono rese conto le aziende australiane che hanno dovuto fare i conti con i fornitori di lancio che fatturano i carichi utili al chilogrammo. È emersa quindi la necessità di utilizzare strutture più leggere, ma al tempo stesso robuste, per resistere in ambienti spaziali con temperature estreme….

Leggi tutto…

The structural acrylic adhesives ARALDITE®2080 and ARALDITE®2081 from Huntsman have been developed to ensure high strength and lower flammability than traditional methyl methacrylate-based products. For most applications, they require minimal surface preparation and ensure good adhesion performance on different substrates (plastic, composites and metal) along with rapid curing at room temperature….

Leggi tutto…

Un gruppo di ricercatori dell’Università del Queensland del Sud, sotto la guida del dottor Wahid Ferdous, sta studiando come sostituire le traverse ferroviarie in legno per i ponti con un nuovo materiale costituito da fibre composite e materiali di scarto. Il governo dello stato del Queensland e il produttore di traverse in cemento Austrak hanno finanziato il progetto attraverso una borsa di ricerca per l’industria….

Leggi tutto…

Analizzando le proprietà dei nuovi ritardanti di fiamma per materiali compositi, i ricercatori del laboratorio Advanced Fibers dell’Empa, centro svizzero per lo studio dei materiali avanzati, sotto la guida di Sabyasachi Gaan, hanno elaborato una tecnica che permette di rendere recuperabili le resine epossidiche, il cui limite di riutilizzo è intrinseco alla natura di materiali termoindurenti, ossia polimeri altamente reticolati che, una volta induriti, non possono essere sottoposti nuovamente a fusione senza carbonizzarsi….

Leggi tutto…